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Kurzfassung

Computergestützte Visualisierungen von Datenbeständen sind ein mächtiges Werkzeug
um unübersichtliche Daten allgemein zugänglich zu machen. Auch eine relativ neue Sparte
- Künstliche Intelligenz (KI) - bietet mannigfaltige Möglichkeiten semantischen Wert aus
großen Datenmengen zu extrahieren. Sie ermöglicht es Sachverhalte in einer Art und
Weise zu analysieren, die bisherigen Methoden in ihrer Spezifität und Genauigkeit teils
weit voraus ist.
In der Medizin und im Speziellen in jenen Fachbereichen, die oftmals auf bildgebende
Verfahren zurückzugreifen, erfreuen sich Visualisierungsverfahren steigender Beliebtheit.
Unser Team bei ImageBiopsy Lab [Lju17] entwickelt und forscht im Bereich KI-gestützter
Visualisierungen im medizinischen Bereich. In meiner Bachelorarbeit habe ich in diesem
Team, aufbauend auf bestehenden Konzepten, ein System entwickelt, welches den Ge-
lenksspalt von Röntgenbilder des Kniegelenks automatisiert vermisst und die Ergebnisse
graphisch so aufbereitet, dass sie dem/der Benutzer/in als augmentiertes Originalbild
dargestellt werden können. Dies geschieht in Form einer Maskierungsebene über dem
zugrundeliegenden Knieröntgen. Die Messwerte beruhen auf den Parametern des Kellgren
and Lawrence System (KLS) zur Klassifizierung von Osteoarthritis (OA).
Die vorgestellte Methode erlaubt es dem/der Nutzer/in auf den ersten Blick das Stadium
und Tendenzen einer OA einzuschätzen und die errechneten Stützpunkte in Echtzeit am
Röntgenbild anzupassen. Das System wurde in ein bestehendes, webbasiertes Framework
aufgenommen und zeigt im Krankenhausbetrieb bereits sein Potential.
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Abstract

Computer-aided visualisations are a powerful tool to make large datasets more accessible.
Artificial intelligence (AI) also o�ers diverse ways in which to extract semantic values
from large data stocks. It enables users to analyse records in ways that often exceed
conventional methods in their specificity and accuracy.
Medicine - more specifically those specialisations requiring imaging methods - are in need
of sophisticated visualisation techniques. Our team at ImageBiopsy Lab [Lju17] runs
development and research in the field of AI aided visualisations in medicine. For my
thesis I developed a system for measuring the joint space in x-rays of the knee, based
on existing concepts. Results of the measurements are processed and presented to the
user as an augmented picture. This is achieved by employing di�erent layers of graphical
overlays on top of the original image. All measurements are based on parameters of the
Kellgren and Lawrence System (KLS) for classification of Osteoarthritis (OA).
The proposed method enables its users to asses the stage and tendency of OA in the
knee at first glance as compared to conventional methods, which can be tedious and
time-consuming. Calculated focus points in the mask layers can also be adjusted in
real time to accommodate for statistical outliers. The system was incorporated into
an existing web-based framework which already demonstrates its potential in a clinical
environment.
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CHAPTER 1
Introduction

1.1 Legal Disclaimer
This project was a cooperative endeavour between me and ImageBiopsy Lab GmbH for
which contracts were signed accordingly. Due to this I am not eligible to disclose the full
source code or configuration of the Image Analysis Server (IAS). However I was able to
include selected algorithms and insights into the functionality and configuration of our
service.

1.2 Background
The work presented in this paper is a multi-disciplinary approach which aims at enabling
physicians to create and modifiy automated medical diagnosis. Therefore, in this chapter,
I will clarify the setting of the project and describe some of the background needed to
see the bigger picture.

1.2.1 Medical Background - What is Osteoarthritis (OA)?

Many cases of chronic knee pain are the result of a condition called Osteoarthritis (OA)
[GG]. This condition is characterised by degenerative processes in joints causing the
degradation of cartilage. This results in increased wear of the bone and ultimately in
chronic pain and other inflammation-like symptoms [Neo12]. Occurrences of OA are
not limited to the knee joint but can be found in a multitude of joints in the body.
The most prominent regions include knees (Gonarthrosis), hips (Coxarthrosis) and the
various joints of the hand [GG, KL57]. Since this work focusses on the analysis of knee
pathologies, I will limit all further explanations to this area of the body.
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1. Introduction

Diagnosis of OA in the knee usually happens in multiple stages. First, the physician
compiles data about the patient’s background and previous conditions. This is followed
by thorough physical examination. If, after these examinations, a case of OA is suspected,
there are some medical imaging techniques to verify this preliminary diagnosis.
The most popular method is to record x-rays in two planes (usually front and side).
Computer tomography (CT) is also an option, but rarely used unless specially indicated.
Physicians will look at imaging results and measure the joint space between two bones.
These measurements are then used to calculate di�erent classification scores. One widely
used score is the Kellgren and Lawrence System (KLS) [KL57] which incorporates not
only joint space measurements but other factors like sclerosis of subchondral areas and
osteophytes in the outer edges of the bone.
The results of these scores can be used to classify the given knee. There are other scores
used in knee OA diagnostics like the Ahlbäck score [Ahl68], which yields comparable
results and also uses a summative score ranging from 1 to 5. Ahlbäck classification is
mainly based on joint space measurements as opposed to the multitude of parameters
used in the KLS [Ahl68, PBS+97].

1.2.2 The Kellgren and Lawrence System
We have seen, that along with the Ahlbäck classification system [Ahl68], a popular score
for classifying OA of the knee is the so-called Kellgren and Lawrence System (KLS)
[KL57]. Results of evaluation are represented by a one-digit integer ranging from 0 to 4,
with 0 being the best possible result while 4 indicates the most critical stage of OA.
Score grades are characterised as follows:

Grade 0: No joint space narrowing (JSN) or reactive changes
Grade 1: Doubtful JSN, possible osteophytic lipping
Grade 2: Definite osteophytes, possible JSN
Grade 3: Moderate osteophytes, definite JSN, some sclerosis, possible bone-end

deformity
Grade 4: Large osteophytes, marked JSN, severe sclerosis, definite bone ends

deformity

Table 1.1: Definition of KLS score grades [KL57, SBBZ08]

In most cases, the basis of calculation is an anterior posterior (AP) x-ray of the knee.
Using this image, the following data is collected [KSF16]:

• Space between the two joints is measured at di�erent locations along the horizontal
axis of the joint space

• Existence and level of expression of osteophytes is determined

• Existence and level of sclerosis in subchondral areas is determined

2



1.3. The Problem

• Altered bone shape is evaluated

These variables are then used to determine the overarching score.

1.3 The Problem

We have seen that OA in the knee is a major cause for chronic pain and inflammation.
Progression of OA can be classified using di�erent systems [KL57, Ahl68] of which the
KLS is a popular choice among physicians. Calculating this score requires the evaluator to
obtain measurements for every knee to be analysed. This can be a rather time-consuming
endeavour considering the number of patients the average medical doctor has to treat
every day. The team at ImageBiopsy Lab [Lju17] developed a novel solution to this
problem by automating the process of measurement retrieval and score calculation. This
method is based on traditional computer vision and image processing techniques as well
as modern machine learning approaches to obtain necessary data. Until now, the only
way to use the software was by going through an elaborate process of installing and
deploying necessary modules, which limited accessibility.

1.4 Contribution

Basing my work on existing paradigms developed by ImageBiopsy Lab [Lju17], a colleague
and I developed a new web-based system providing the aforementioned functionality of
measuring and calculating the KLS. The product was given the name Image Analysis
Server (IAS). This solution is augmented by mask overlays on top of the original x-rays,
allowing for real-time manipulation of measurements and score properties. Realising
these overlays constituted the main part of my contribution to the solution, which is why
I will focus on these aspects in this paper.

These additions enable physicians to adjust the score to their liking and correct values
within the margin of error of the automated calculation.
Since this project is web-based, analysis of knee x-rays can be undertaken by any physician
using merely a web-browser without having to go through the strenuous setup procedure.

By the time of writing this paper the operation of a test instance of this service has been
approved by the management of the "Landesklinikum Horn". There are already ongoing
negotiations with the "Landesklinikum Holding" about deploying the solution in hospitals
all around Lower Austria.
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1. Introduction

1.5 Organisation of the Project
The implementation of Image Analysis Server (IAS) was a joint e�ort between me and
my colleague Lukas Maximilian Masopust. Other people involved were my personal
supervisor Alexander Krumböck as well as the technical supervisor Zsolt Bertalam.
For the deployment of IAS we had ongoing correspondence with the representative of
VISUAPPS GmbH Armin Kanitsar [Kan].

As for my part of the project, I was responsible for planning and developing the modules
that would take previously calculated analysis data and further process it for visual
representation in the scalable vector graphics (SVG) format. I also developed the servlet
interface of IAS and all related command functionality like dataset initialisation, download
of PDF reports, etc. (for details see Sections 3.1 and 4.1).

All requirements for the first working version of IAS were defined in accordance with
Armin Kanitsar and our project team. Internally we organised the project using a
simplified management approach roughly based on the widely used SCRUM methods.

1.6 Outline
The following topics will be presented in this paper:

• Discussion of the state-of-the-art of automated medical analysis and visualisations
comparable to those used in this work.

• Overview of the methods and tools used to achieve the results described in 1.4.

• Detailed description of my suggested approach

• Conclusion and critical reflection concerning my work and achieved outcomes

• Discussion about current state and future work to be done in the field
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CHAPTER 2
State of the Art

Over the past years, and therefore some time after machine learning had gained mo-
mentum in informatics, the field of medicine has adopted these new approaches to solve
problems in its own area. AI, in this regeard, lends itself mostly to identification and
classification problems and is especially suited for analysing and processing images ob-
tained by various medical imaging techniques.

Since my project is formally part of a larger cluster of automated medical applications,
we will look at the state-of-the-art of already established solutions in this field. There
are however, to this date and to the best of my knowledge, no comparable solutions to
the one discussed in this paper.

2.1 Image Segmentation
Analysis of images is still considered the gold standard in many areas of medical diagnostics.
Popular techniques include magnetic resonance imaging (MRI), x-rays, PET scans or
microscopy of histologic specimen. This holds especially true for the field of oncology, as
we will see below.

Due to tremendous advancements of neural networks (NN) - a subgroup of AI - in
past years the power to reliably analyse, segment and classify digital images has since
surpassed the capability of human evaluators in many cases [JJZ+17]. Tasks tackled
with these methods mostly revolve around segmentation and classification of images.
Segmentation is the extraction of relevant parts of an image that are to be analysed
further. Classification describes the process of categorising images based on some selected
features. These categories are often defined as di�erent types of pathologies or yes/no
decision problems.

5



2. State of the Art

This is why many research teams have applied sophisticated machine learning techniques
to medical problems. El-Dahshan et al. have looked at several methods of employing ma-
chine learning for image segmentation and classification in brain MRI scanning while still
retaining computational viability in production systems. They used two di�erent kinds
of NNs to accomplish both segmentation and classification of malign tissue alterations.
For region of interest (ROI) extraction they used a derivative of the pulse coupled neural
network (PCNN), the FPCCN, "F" standing for feedback, indicating that output data
is used again as input to modulate overall calculations. The PCNN is considered to be
a very powerful type of neural network for image recognition and segmentation tasks
and is inspired by the mammalian visual cortex [EDMRS14]. A back-propagation neural
network (BPNN) was used to classify images as normal or abnormal based on previously
selected features.

Figure 2.1: Usage of SVM to determine optimal ROI thresholds [KSQ+09]

6



2.2. Image Classification

Kerhet et al [KSQ+09] have used machine learning to find optimal ROI segmentation
thresholds in positron emission tomography (PET) scans of the lung. The refined
threshold can then be used to extract more accurate ROIs and moreover gain better
analysis results (Figure 2.1).

2.2 Image Classification
As previous work points out [EDMRS14], further steps after image segmentation usually
include classification of suspected pathologies. In oncology these classifications are mostly
done in a binary fashion, discriminating between benign and malign tumours - in other
words determining if there are tissue alterations or not. Another approach are so-called
multi-class classifications, which are used to discern multiple types of cancer.

Figure 2.2: Pre-segemented mammographic scan [MGD+06]

7
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Figure 2.3: AI accuracy compared to traditional methods [MYA+18]

These classification problems have also been subject to AI research. Mammographic scans
were processed using support vector machines (SVM), k nearest neighbors (kNNs) and
multi-layer perceptrons (among others). Previously segmented images where analysed and
classified based on selected texture features within selected ROIs (Figure 2.2) [MGD+06].
The described methods were applied respectively to the top 10 most expressive image
features within relevant areas.

Another team applied AI-backed classification methods to histologic images of brain
tumour tissue [MYA+18]. The specimen where analysed using the previously described
binary mode as well as using multi-class classification systems.

Classification results reached levels comparable to ratings given by experts employing
traditional diagnostic tools like manual histology or genetic analysis (Figure 2.3). Since
machine learning can be employed quite e�ciently when used for image analysis, re-
sults of these classifications where enough to process them further and create intuitive

8
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heatmap-like visualisations of infiltrated areas in the tissue (Figure 2.4).

Figure 2.4: Malignancy heatmap-overlay in histological findings [MYA+18]
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CHAPTER 3
Methodology

In this chapter I will discuss technologies and methods used to develop our final product,
the Image Analysis Server (IAS).

3.1 Technical Environment
One of the earliest goals we set for IAS was that it should be modular and easily accessible
from anywhere. This means that, in a best-case scenario, the service will be installed on
a single server which then serves a multitude of hospital clusters and physicians o�ces.
Keeping in mind that the software should also be deployable in decentralised hospital
environments, the design had to rely on well-established technologies supported by a
wide variety of systems.

Given the nature of IAS as non-invasive support software, it has to be certified by
a qualified entity as a Class I Medical Product according to the EU Medical Device
Regulation (MDR) act [Eur17]. This further limited the choice of technologies.

3.1.1 Language and Frameworks
The constraints listed above led to the decision of using Java as the main programming
language. This was supported by the fact that Java has already been validated for
the MDR by ImageBiopsy Lab. Since certification is a rather complicated and time-
consuming process, many hospitals and medical institutions rely on legacy systems that
are already validated. This was the basis for choosing a Java Servlet structure as the
underlying architectural base.

Java is well-supported by all major operating systems and the servlet structure is
conveniently built into the Java Enterprise Edition (Java EE). As for the version, JDK
8u171 and 8u172 were both used in the course of development.
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3. Methodology

3.1.2 Basis of Development
Prior to project initiation there was already a basic prototype implementation. This
precursor was very limited in its functionality since it merely rerouted HTTP requests
to existing routines running separately from this dispatcher, which also only provided
minimal functionality.

For my work the relevant parts of this prototype were reused. These mainly consisted of
a list of supported HTTP requests as well as the basic command parsing functionality,
which abstracted HTTP POST and GET requests into one generic type of request.
Further plans for architecture and functionality were also worked out with my advisor
prior to development (see 4.1).

3.1.3 Server Infrastructure
Servlets are compiled to packaged *.war files. Not unlike the more commonly known
*.jar file type, they are slightly altered versions of ZIP archives. These packages are
deployed on so-called Application Servers, which run them as separate instances serving
incoming requests. Established brands include Tomcat (Apache Software Foundation)
and Wildfly/JBoss (JBoss, Red Hat). ImageBiopsy Lab, having previously worked with
Application Servers, suggested using the Wildfly server, which is also used by our first
external deployment partners - the "Landeskliniken-Holding" in Lower Austria. Wildfly
version 10.1.0 was chosen for all development stages. Test servers themselves ran the
64bit version of Ubuntu 16.04.

3.1.4 Software Clients
To test IAS we used the radiology web frontend "Orthoweb", which was kindly provided
to ImageBiopsy Lab by VISUAPPS GmbH [Kan].

3.1.5 Scalability
IAS was designed to be robust and resource-conserving, while retaining accessibility
to multiple clients simultaneously. It therefore was implemented using a lightweight
infrastructure that only saves basic image and metadata submitted by clients and
recalculates necessary output upon request. Tight session handling with timeouts of
around 30 minutes (adjustable) serve as a good compromise of usability - considering
the time a physician typically spends diagnosing one image - and economical resource
management.

3.2 Medical Considerations
In medical informatics there are certain, widely accepted standards concerning transfer
and storage of clinical data [DAB+01, DIC, ICD, LOI]. For medical imaging data, like
that used by IAS, the most widely used format is the so-called DICOM standard (digital
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imaging and communications in medicine) [DIC]. These files are specified to contain
direct payload like images, videos or analysis data. Along with these main data come
specific metadata blocks, which contain information about the patient, the practitioner,
the device used to record the data and many more.

IAS uses the DICOM standard to load images, store metadata and generate reports in
DICOM and PDF formats. To achieve this I utilised version 3.3.7 of a library called
"dcm4chee" [DCM] which was specifically designed to process the DICOM format in Java.
All DICOM image data shown in this paper originates from the multicenter Osteoarthritis
(OA) study [SNG+13].

3.3 Evaluation

One major concern when developing IAS was runtime performance. This becomes
especially important when serving multiple clients from one system. Since there was
already a prototype prior to my work, we felt it suitable to use this as a reference point
for performance benchmarks.

Performance plays a role in the initialisation phase but is especially important when
using the modifyPoint and getSVG commands (see Table 4.2), since most clients will
send these requests in real-time. Considering this, the best-case outcome would be an
e�ective frame rate of 10-30 frames per second.

For our evaluation measurements, separate requests were sent to the server. Each
command was first executed in an initial-run scenario, e�ectively measuring caching and
calculation times. We tested this initialisation state for each implementation, each time
restarting the whole service (n = 10). For applicable requests - those being getSVG and
modifyPoint (see Table 4.2) - successive measurements were also executed. Each of these
commands was sent multiple times, measuring response times separately in milliseconds
(n = 30).

To make measurements from di�erent runs and systems comparable, all time records t

were converted to their respective frame rate f (where applicable): f = 1000
t

Here f denotes the respective frame rate whereas t represents the measured time in
milliseconds. The value 1000 is used a time reference value (also in milliseconds) to
calculate frames per second.

Statistical evaluation was done using the standard t-test. Response times were compared
using a significance threshold of 5 %.

As for the technical details of evaluation we used a variety of di�erent tools. To send
requests to the service we used a tool called "Postman" [Pos] which allowed us to construct
fine-tuned commands, especially tailored for our server infrastructure. This application
was also used to measure e�ective response times.

13



3. Methodology

Measurements were all conducted within our company network, which is a standard
Gigabit LAN infrastructure. The server running both IAS and the previously mentioned
prototype - hereafter called EXT - had the following specifications:

• AMD FX(tm)-6100 Six-Core Processor running at 3.30 GHz

• 16.0 GB of working memory

• Wildfly 10.1.0.Final

• Microsoft Windows 7

• Ubuntu Linux 16.04

Due to technical constraints, EXT was running under Windows, while IAS was set up on
Ubuntu. Both were installed within Wildfly.

14



CHAPTER 4
Suggested Solution

This chapter documents the development process and functionality of IAS. As stated
previously (see Section 1.1) the source code and detailed architecture are not fully
disclosed in this chapter.

4.1 Functionality and Architecture
The software architecture consists of di�erent modules which can be categorised accord-
ingly:

Request Processing Incoming requests are handled by the servlet class
Request Handling This module routes requests to the according modules

Numerical Calculations Data is preprocessed and calculated using external
modules

Mask Generation Overlay SVG masks are constructed according to
calculation data

Report Generation Reports are constructed based on calculation data
Focus Point Modification Modifications are reflected locally and re-calculated

by the calculation module

Table 4.1: Modules of IAS

Numerical calculations are done by external modules, that process a given image or parts
of it. This is done using machine learning techniques and traditional computer vision
algorithms.

To better illustrate the core functionalities of IAS, a typical use-flow is laid out in this
section. First, the client contacts the server with an init command, sending the DICOM
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4. Suggested Solution

to be analysed along with the request in a byte stream. This step is required to start a
new session, if none is already established. If the first command sent by a client is not
the init command, the server will refuse communication.

Initialisation loads the image into memory and triggers calculations. These calculations
detect two landmarks on the image which are the outermost parts of the head of the
tibial bone (Figure 4.1). Using these landmarks, or focus points (FPs), other FPs are
calculated around the joint space area. These FPs constitute the supporting mesh for
constructing and adjusting the mask overlay. Additionally, measurements concerning
joint space width and area between the bones are also calculated by the external numeric
calculation units.

Figure 4.1: Raw x-ray overview with landmarks marked in green
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Because all relevant calculations are executed upon initialisation, all following commands
can be sent in arbitrary order. Calling init again will simply reset the current session
and re-initialise all data with the newly transmitted image.

A detailed list of supported commands can be found in Table 4.2. Figure 4.2 shows the
whole process schematically.

Command Input Output Description
init DICOM byte stream none Initialises the

service and
calculates
measurements

getPoints none JSON Array of FPs Returns a list of
all calculated FPs

modifyPoint pt, x, y SVG mask overlay Moves FP (pt) to
x and y

getSVG none SVG mask overlay Constructs the
SVG mask
overlay

getSR none Report in DICOM format Generates a
structured report
(SR)

report none Report in PDF format Generates a PDF
report

Table 4.2: Specifications of HTTP servlet requests

4.2 Algorithms
IAS contains some key functionalities that are essential to the workings of the overall
product. Here I will list the most important algorithms used in our project.

4.2.1 Nonorthogonal Image Cropping
The algorithm takes the whole image data as a one-dimensional array and the desired
crop area as arguments and performs cropping by utilising e�cient array operations.
Rectangles (see input for Algorithm 4.1) are collections of three points, marking the top
left, top right and bottom right corner of the rectangle in world coordinates. Most x-ray
images are not aligned perfectly to one axis. This is why this algorithm is capable of
performing nonorthogonal, rotational crops.

To understand the need for this algorithm, performance has to be thought of first.
When calculating landmarks, the whole image data is sent to external modules. This is
necessary because the whole image is scanned to detect the position of the knee joint.
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Figure 4.2: Schematic overview of the server architecture. Incoming requests are assigned
to their respective sessions, which take according actions (Bottom). Supported request
types include initialisation of the service, retrieval of calculated focus points, modification
of focus points, retrieval of calculated mask overlays in SVG format and generation of
reports in DICOM or PDF format (Top Right). All commands return their results back
to the main servlet entry point which in turn responds to the client (Top Left).

Other calculations like FPs in the joint area or joint space width do not need to use the
full image (although this would be possible). Images are rather big and it would not be
feasible to send the whole picture for all minor calculations. That is why this algorithm
is used for all smaller calculations to extract relevant image areas before sending them to
external modules.

Cropping is not done pixel perfect, because it does not have to be and because the
proposed approach is more e�cient. Pixel interpolation is also omitted for the same
reasons (Figure 4.3).
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Algorithm 4.1: Nonorthogonal Image Cropping
input : Image to be cropped (image), Cropping Area (cropArea)
output : Cropped image (croppedImage)

1 Calculate step size for upper edge based on rotation angle as ueStepX, ueStepY ;
2 Calculate step size for lower edge based on rotation angle as leStepX, leStepY ;
3 for y Ω 0 to cropArea.height do
4 tempX Ω cropArea.upperLeft.x + ceil(leStepX ú y);

/

*

leStepY has to be subtracted due to orientation of SVG

coordinate system

*

/

5 tempY Ω cropArea.upperLeft.y ≠ floor(leStepY ú y);
6 for x Ω 0 to cropArea.width do
7 croppedImage[y ú cropArea.width + x] Ω

image[floor(tempY ) ú image.width + ceil(tempX)];
8 tempX Ω tempX + ueStepX;

/

*

ueStepY has to be subtracted due to orientation of

SVG coordinate system

*

/

9 tempY Ω tempY ≠ ueStepY ;
10 end
11 end

Figure 4.3: Cropping accuracy of the algorithm. If the cropping area is perfectly aligned
with one axis all pixels are considered in the crop (Left). In cases where the cropping
area is tilted, some pixels are left out for the sake of array size consistency and algorithm
speed (Right).
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4.2.2 Relative Landmark Transformations
When working with mask overlays we needed to find an easy and uncluttered way to use
the values obtained from the external calculation modules to generate respective SVG
data that visually represents these values. The SVG standard supports the application of
matrix transformations to single elements and whole groups of objects [DLC+06]. This
feature lent itself well for our specific use case.

To achieve the desired outcome we first constructed a basic SVG mask shape manually,
which in turn was to be used as a template. This shape contains all the information the
final mask overlay does but in it all points are untransformed and lie within a normalised
coordinate system. In this system all coordinates start at 0 and can reach a maximum
absolute value of 100 (Figure 4.4 (a)). This value range was chosen to easily construct
masks in terms of percentage measurements. Since it is untranformed raw data, this
basic SVG can be easily reused for all possible mask overlay constellations.

After loading the template, the appropriate transformation matrix has to be applied to the
SVG data to obtain the final mask overlay data. To calculate the transformation needed
in each case respectively, an algorithm (Algorithm 4.2) was constructed to calculate trans-
lation, rotation and scale given two normalised points and their transformed counterparts.
In simpler terms, the algorithm can be viewed as a way to compare two corresponding
lines based on their transformation. It was used to compare the untransformed values,
taken from the SVG template, with those of the external calculation modules. The latter
values are given in absolute image coordinates, so they can be seen as the transformed
version of the untransformed template data. An example of the resulting mask after
applying transformations can be seen in Figure 4.4 (b).

Figure 4.4: Landmark transformations. (a) Original, normalised SVG. (b) Final, trans-
formed SVG.
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In this way, we were able to conveniently extract matrix properties for each new calculation
which were then simply applied to the root element of the SVG object. This in turn
transformed the whole mask overlay to fit the raw x-ray exactly.

Algorithm 4.2: Landmark Transformation
input : Normalised points (p1n, p2n), Transformed points (p1t, p2t)
output : Matrix representing the transformation (t)

1 Create temporary transformation objects (tNorm, tT rans);
2 lengthNorm Ω p1n.distanceTo(p2n);
3 lengthTrans Ω p1t.distanceTo(p2t);
4 if lengthNorm ”= 0 then
5 scale Ω lengthTrans/lengthNorm;
6 else
7 scale Ω 1;
8 end
9 dxNorm Ω ≠p1n.x;

10 dyNorm Ω ≠p1n.y;
11 tNorm.translate(dxNorm, dyNorm);
12 p2n Ω tNorm.apply(p2n);
13 dxTrans Ω ≠p1t.x;
14 dyTrans Ω ≠p1t.y;
15 tT rans.translate(dxTrans, dyTrans);
16 p2t Ω tT rans.apply(p2t);
17 angle Ω p2n.angle(p2t);
18 crossProduct Ω p2n.cross(p2t);
19 if crossProduct ”= 0 then
20 direction Ω crossProduct/ abs(crossProduct);
21 else
22 direction Ω 0;
23 end
24 angle Ω angle ú direction;
25 return t.translate(dxNorm,

dyNorm).rotate(angle).scale(scale).translate(≠dxTrans, ≠dyTrans);
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4.3 Mask Overlays

The core features of IAS are its visualisation capabilities. Up to this point I discussed
the underlying functionalities for handling requests, calculations and algorithmic data
manipulations. We have already seen some commands (getSVG and modifyPoint) that
return SVG graphics to the client. These are in turn placed on top of the x-ray as a
mask overlay by the client viewer. Figure 4.5 gives a detailed overview of the di�erent
parts of the SVG mask.

Figure 4.5: SVG mask superimposed on top of original x-ray. (a) Joint space measurement
between upper and lower FPs (see (e)) in mm. Colours correspond to the contribution
to the KLS score ranging from green to red. (b) Tibia landmarks detected by external
calculation module. Laterality on the x-ray is also detected and denoted by MED =
medial and LAT = lateral. (c) Joint space measurement box. This area is used for
cropping (see Algorithm 4.1) to reduce calculation complexity. (d) Joint space area
between the femoral and tibial bone. The calculated area is displayed in mm

2 and the
percentage ratio of the area as compared to the full joint space measurement box (see
(c)). (e) Single joint space FP framing the joint space area.
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4.3.1 Systematisation

The mask itself is structurally divided into a mask and an overlay component:

• Mask is the basic structure needed to guide calculations and positioning routines.
This includes the landmark FPs seen in Figure 4.5 (b) and joint space measurement
boxes (c).

• Overlays are all parts which are constructed from dynamic, ever changing proper-
ties generated by the external calculation modules. These are marked (a), (d) and
(e) in Figure 4.5.

Architecturally masks are arranged in a flat hierarchy:

• KneeMask containing the landmarks (Figure 4.5 (b))

– JointSpaceMask (Left) containing left-hand sections (a), (c), (d) and (e)
of (Figure 4.5)

– JointSpaceMask (Right) containing right-hand sections (a), (c), (d) and
(e) of (Figure 4.5)

Each element of the hierarchy is responsible for generating its respective mask and overlay
components.

4.3.2 Characteristics of Mask Overlays

Mask overlays directly reflect calculations. To emphasise these diagnostic outcomes
visually, IAS uses color codings (Figures 4.6 and 4.7) o�ering users the possibility to
assess the joint’s general condition at first glance.

In addition, physicians using IAS have the possibility to adjust the score manually by
dragging any FP to a new position. Owing to the hierarchical approach chosen for
development only areas that are a�ected by changes need to be re-evaluated by the
service.
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Figure 4.6: Visual assessment of a healthy
knee joint with KLS grade 0. Green labels
indicate healthy conditions.

Figure 4.7: Visual assessment of a patho-
logical knee joint with KLS grade 3. Yel-
low and orange (and potentially red) labels
indicate joint impairments.

4.4 Evaluation of Results
A fully functional version of IAS was tested using the evaluation procedure described in
3.3. Results were compared against equivalent measurements conducted on the prototype
implementation (EXT).

Results of initial-run performance are shown in Figures 4.8, 4.9 and 4.10. Response time
measurements of initial and successive tests can be found in Figures 4.11, 4.12 and 4.13
for getSVG and modifyPoint respectively.

All measurements of IAS commands were compared to their equivalent request in the
prototype implementation. Some comparisons were omitted due to missing data. This
is because the EXT implementation does not support all functionalities that IAS does.
Values were compared using a standard t-test. Results are listed in Table 4.3 for initial
runs and Table 4.4 for successive requests.

The data shows a significant performance increase in all cases. Commands which are
utilised for real-time mask manipulations show the highest gains, further underlining
IAS’s potential in scenarios where live feedback is essential for user productivity.
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getPoints getSVG modifyPoint modifyPoint
(joint space) (landmark)

Mean response time (ms) IAS 17.8 26.4 87.9 212.2
Mean response time (ms) EXT 900.3 39.6 531.6 475.6

p-value 0.03469 0.04248 0.0001475 0.001092

Table 4.3: Statistical evaluation of initial-run response times (ms) using a standard t-test

getSVG modifyPoint modifyPoint
(joint space) (landmark)

Mean response time (ms) IAS 38.0 84.5 105.1
E�ective frame rate (fps) IAS 26.3 11.8 9.5

Mean response time (ms) EXT 44.3 459.0 451.0
E�ective frame rate (fps) EXT 22.6 2.2 2.2

p-value 0.3027 3.44e ≠ 12 < 2.2e ≠ 16

Table 4.4: Statistical evaluation of successive response times (ms) using a standard t-test.
E�ective frame rates are based on response time measurements.
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Figure 4.8: Performance of init command.
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Figure 4.11: Performance of getSVG com-
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cached SVG data in both variants. The
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Figure 4.12: Performance of modifyPoint
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CHAPTER 5
Discussion

5.1 Summary
We have seen the potential of IAS as a modular service o�ering its capabilities to clients
via a simple request-based interface. Data from this communication interface can be
integrated into interactive client software as we have discussed in previous sections (see
3.1.4 and Figures 4.5, 4.6 and 4.7). We are confident that this solution has the potential
to be widely used in hospitals and doctors’ o�ces with minimal maintenance.

Although not yet optimal, it provides many useful features to automate OA analysis and
o�er data in a modular, reusable fashion. IAS is subject to continuous improvements
and is now being developed by many employees of ImageBiopsy Lab.

5.2 Related Topics
In this paper we discussed the parts of IAS which are closely connected to its modular
visualisation capabilities. There is, of course, more to this project than just mask handling,
which will be briefly discussed here.

Using the mask interface is the way users interact with IAS, but there are also times it is
necessary to export all data related to a certain analysis. We have developed modules to
do this by collecting data from all modules of the service and aggregating them into a
single report in XML format.

There is also a whole side-project concerned with providing convenient ways to access
the external calculation modules mentioned throughout this paper. It allows for easy
and modular exchange of units which makes version updates or methodology changes in
these modules easy to implement.
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5.3 Performance
Results presented in Section 4.4 show promising values for successive run performance.
All measurements were significantly faster than the prototype and show worst-case mean
frame rates of 9.5 with top values ranging up to 22.6 frames per second. Some of these
values are even within the threshold of continuous visual motion perception [RMG00]
which makes for a smooth, real-time user experience.

These rates are more than suitable for most use-cases covered by IAS. However we are
working on code optimisations to further increase e�ective frame rates, with a goal of
around 30 frames per second in mind. To this end we have already conducted tests with
more powerful production servers and plan to deploy the application to easily scalable
Amazon Web Service instances using Docker containers.

5.4 White Spots
The first version of IAS is completed and stable. There are however still many enhance-
ments that we are currently working on.

There is evidence that textural analysis can yield beneficial results for more accurate OA
diagnostics [JJV+17, WPS+12, KFW+09]. This could be realised in our future work to
strengthen predictive capabilities of IAS.

Looking beyond KLS, there are many unexplored opportunities to expand IAS using
other classification systems with respectively di�erent mask interfaces. Our team at
ImageBiopsy Lab has also started looking into ways of analysing di�erent joints, like the
hip or palmar region using the same modular approach that this project o�ers.
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CHAPTER 6
Conclusion

In this paper we have seen how machine learning can be applied to diagnostic problems in
the field of medicine and di�erent approaches of visualising this data have been presented.
We discussed the potential of automated Osteoarthritis (OA) evaluation of the knee joint
and looked at our proposed solution to this task.

6.1 Image Analysis Server (IAS)
Functionalities and architectural structures of the solution were explained, giving insight
into the systematics behind automated measurements using raw x-ray images. Further
we looked at our proposed visualisation technique for the measurement output from
the external calculation modules. This was realised by hierarchically ordered mask
modules, which in turn generate SVG data for individual use by the client (see Section
4.3). Potentials for client interactions have been tested with the interactive web frontend
"Orthoweb" which enables users to modify FPs and generate reports (see Subsection
3.1.4).

6.2 Future Work
The discussion points to white spots and open topics concerning the future of IAS. There
are some key aspects we will focus on in the near future of development. They will be
listed here.

6.2.1 Texture Analysis
One of the more immediate tasks that will follow up on this work is the integration of
bone texture analysis. This will be done by cropping the upper area of the tibial bone, on
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which texture algorithms will heuristically calculate bone density and other parameters
concerning the condition of the bone itself.

Technically this new method will use the same hierarchical sub-mask approach as the
joint space modules did in this work. New texture mask modules will be integrated into
the existing mask hierarchy and will be responsible for data handling and calculations
related to bone texture analysis.

6.2.2 Deployment in Lower Austria
At the time of writing, IAS is in its test phase at the "Landesklinikum Horn". We hope
to be able to deploy the product in all of Lower Austria by the end of summer 2018.

6.2.3 EnvoyAI Integration
EnvoyAI [Env] is a platform for companies to host their medical analysis software using
dedicated Docker containers. We are currently working on porting IAS to this new format.
Basic functionality of our software is already integrated into EnvoyAI.

6.2.4 Outlook
In the future we plan to make IAS even more modular by breaking up its architecture
into separate containers. These will be designed in a way that they are interchangeable
and easy to configure. Clients could then for example choose to analyse their images
using the local filesystem and the HL7 standard in one case and easily switch to remote
analysis using traditional XML encoded data in another case.

To summarise this work, it can be said that the IAS has been proven to open up many
interesting opportunities for automated medical analysis. There is yet great potential to
further drive its development.
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